

Abstracts

Asymptotic High-Frequency Modes of Homogeneous Waveguide Structures with Impedance Boundaries (Correction)

I.V. Lindell. "Asymptotic High-Frequency Modes of Homogeneous Waveguide Structures with Impedance Boundaries (Correction)." 1982 Transactions on Microwave Theory and Techniques 30.3 (Mar. 1982 [T-MTT]): 296-296.

The treatment of Section V in the above paper was incomplete and, as such, a bit misleading. In fact, the existence question for solutions of equation (53) for $f_{sub 2} = (\pi_{sub 2}, m_{sub 2})$ did not properly take into account the degeneracy of the basic modes $f_{sub 1} = (\pi_{sub 1}, m_{sub 1})$. It is known that for a solution to exist, the right-hand side of a deterministic equation like (53) must be orthogonal to all solutions of the homogeneous adjoint problem, which in this case is the basic problem with solutions $f_{sub 1}$. Without degeneracy, equation (56) would be that condition. However, since there are at least two linearly independent solutions $f_{sub 1i}$, there are at least two such conditions, which leads to a contradiction except if $f_{sub 1}$ in (53) is chosen in a special way. Let us denote the admissible $f_{sub 1}$ in (53) by $f'_{sub 1}$ and it can be written as a linear combination of any complete set of degenerate basic modes corresponding to the same parameter $\beta_{sub 1}: f'_{sub 1} = \sum \alpha_{sub i} f_{sub 1i}$.

[Return to main document.](#)